How to Select the Right UV-A Lamp for Your NDT Needs [Checklist]


Learn the top four things to consider when looking for a new UV-A light for fluorescent penetrant testing or magnetic particle inspection.

By David Geis, Product Manager


The general lighting industry has embraced LEDs as the preferred technology of choice over incandescent and fluorescent bulbs due to higher flexibility and fewer safety concerns. However, the nondestructive testing community has trailed in adoption of LEDs due to the special lighting requirements and challenges posed by fluorescent methods such as liquid penetrant testing or magnetic particle inspections.

With regulatory exemptions for NDT expiring in recent years and advancements in LED technology and manufacturing, high-intensity LED UV-A light sources are now the go-to solution for NDT professionals.

While flexibility is one of the main advantages to LED technology brings to NDT, it also means more details are required to specify the right performance for nondestructive testing. For a lamp to be useful in fluorescent penetrant or magnetic particle inspection, many factors must be considered.


1. Peak Wavelength & Emission Spectrum

Peak wavelength is the most important factor when selecting an LED lamp for fluorescent inspection.

When the formulas for penetrants and magnetic particle materials were created, the default UV-A source was mercury-vapor, which produce a single UV-A peak at 365.4 nm, the elemental emission line of mercury. Therefore, all fluorescent penetrants and magnetic particle materials are tuned to fluoresce under UV-A at 365 nm.

With LEDs, the peak wavelength is variable and depends on the individual LEDs used when the UV lamp is manufactured. To make sure that an LED UV-A lamp produces fluorescence in penetrants and magnetic particle materials, the LEDs must have a peak wavelength within the range 360-370 nm.

It is also important to consider the UV-A emission spectrum since the UV-A emission of an LED is much wider than that produced by mercury-vapor. At the tail end the spectrum includes some emission in the visible light range above 400 nm which can be observed as a deep violet glare from the lamp. Fluorescent penetrant and magnetic particle inspections are performed in a dark environment to increase contrast, and visible light contamination will degrade the inspection. For inspections to aerospace specifications, like ASTM E3022, Nadcap AC7114 and Rolls-Royce RRES 90061, this deep violet glare is not acceptable. For that reason, any lamp used for aerospace inspection, such as the EV6000, must include a UV-A pass filter to block visible emission.

Read more about why ASTM E3022 requires a UV-A pass filter.


2. Beam Profile & Working Distance

With LED lamps, you are not limited to a single configuration to perform all NDT inspections. Lamps can be designed for specific applications and uses.

Lamps designed for close-up inspection will have a focused intense spot, but a small beam area. The beam area of an LED UV-A lamp is the measure of how much surface is above the minimum 1,000 µW/cm2 irradiance required for inspection. To achieve a wide beam area, an array of LEDs is needed.

However, if an array is used too close to the inspection surface, patterns of bright and dim spots will result. This is the trade-off between working distance and beam area. 

Lamps with a small beam area are useful for inspecting tight areas like holes, weld joints, and internal surfaces. But when used on large structures, a small beam can create “tunnel vision” where the inspector is focused on a single area and indications just outside of the beam area can easily be missed.

A lamp with a large beam area will provide UV-A irradiation to the area peripheral to the inspection. This allows the inspector to quickly locate and identify fluorescent indications in the peripheral area for closer inspection.

The working distance of an LED UV-A lamp is the minimum distance required to provide even coverage.

When placed very close to a surface, individual LEDs in an array will project separate beams with dim areas in between. Such uneven coverage degrades the quality of the inspection, and could lead to missed indications. But as the lamp is moved away from the surface, the beams from individual LEDs will merge into a smooth, even profile.

Inspection should only be performed when the lamp is positioned farther than minimum working distance.

Check out Magnaflux's range of LED UV lamps for nondestructive testing.


3. Power Supply

Working at low voltage, an LED UV-A lamp can operate on battery power for several hours. This makes the lamp very portable, and field inspections become quick and simple.

However, there is a concern with battery-powered lamps because LED intensity is directly related to supply voltage and current. As a battery is used, the voltage and current drops, giving a characteristic discharge curve. With an LED UV-A lamp, this can result in decreasing intensity over time, eventually dropping below the minimum 1,000 µW/cm2 requirements.

Advanced lamps incorporate constant-current circuits that monitor the battery discharge. These lamps will automatically turn off if they are not able to maintain 1,000 µW/cm2 minimum intensity. Knowing the type of battery and the discharge curve is important to ensure quality inspections with battery-powered LED UV lamps.


4. Certification Requirements

Different industries have different inspection requirements and tolerances.

The aerospace NDT industry, including fluorescent penetrant and magnetic particle inspections, have high level specifications on all aspects of the process. After five years of study, the aerospace requirements for LED UV-A lamps were established in ASTM E3022. This standard provides baseline performance for lamp manufacturers to meet for use with fluorescent inspections.

An LED UV-A lamp that is certified by the manufacturer to ASTM E3022, like the EV6000 hand-held UV lamp, is acceptable for use by all aerospace primes and OEMs, and meets Nadcap audit criteria. However, these requirements only apply to lamps used for final aerospace inspection. Lamps used elsewhere in the process, such as penetrant wash or rinse stations, typically do not require full ASTM E3022 certification.

For non-aerospace industries like welding, energy, pipeline or field inspection, there are fewer certification requirements. More rugged industrial inspections are often done in less-than-ideal conditions so more intense UV-A is needed to make fluorescent indications visible. However, research has shown UV-A intensities above 10,000 µW/cm2 at 15 inches / 38 cm can cause fading of fluorescent dyes and pigments.

An LED lamp for industrial applications, like the newly released EV6500 dual-light UV lamp, should include a manufacturer’s certificate of conformance that includes the maximum UV-A intensity, regulated below 10,000 µW/cm2.  The certificate should also include peak wavelength within the range of 360-370 nm to ensure the lamp has the proper emission spectrum to induce fluorescence.

Learn about our Stationary LED UV Lamp for NDT Inspections.


LED lamps are a valuable advancement to nondestructive testing by providing greater flexibility in design and application, and improved safety. However, there are many considerations to choosing the right LED UV-A lamp for use in fluorescent inspection. Factors such as emission spectrum, beam area and power supply must be considered when using LED lamps. Certification requirements are also a consideration for aerospace and other high-spec industries.

By carefully considering their testing needs before investing in a LED UV lamp, NDT professionals can be confident they are getting the right tool to help make their fluorescent penetrant testing and magnetic particle inspections faster and more efficient. 



Hand-held LED UV Lamp
Hand-held, Dual-light LED UV Lamp
Stationary Inspection LED UV Lamp

Part Number


Buy Now


Buy Now


Buy Now

Description UV-A Pass filter eliminates deep violet glare and provides highest inspection contrast High UV-A intensity gives bright fluorescent indications, and wide-angle white light mode prevents glare Broad and even coverage in both UV-A and white light modes, and full inspection intensity


Published April 18, 2017

Want to stay up on the latest NDT insights and articles from Magnaflux? Subscribe to Magnaflux updates get fresh news delivered to your inbox.

Please wait while we gather your results.

Related Blog Posts

Defining IP Ratings for Electronics Used in Mag Particle Testing & Liquid Penetrant Testing

Defining IP Ratings for Electronics Used in Mag Particle Testing & Liquid Penetrant Testing

In this article, we break down the ANSI/IEC 60529 Ingress Protection Code with a chart to show what's essential for NDT equipment


ST700 Overhead Inspection UV Lamp

New Stationary LED Inspection UV Lamp for NDT Pros

Learn how this new UV lamp for nondestructive testing solves the biggest challenges in fluorescent NDT UV illumination.


ST700 High Volume Inspections

How to Increase High-Volume NDT Inspection Speed and Reliability with LED UV Lighting [Case Study]

See how an automotive parts manufacturer decreased inspection time and improved reliability with wide-beam, overhead UV lamps


ST700 Hood Mount is a freely-adjustable mounting frame

New Mounting System for Overhead UV-A Lamps [Video]

The ST700 Hood Mount is a freely-adjustable mounting frame to give operators the option to position their overhead UV-A Lamp to optimize inspection ease


Magnaflux ST700 Overhead NDT Inspection Lamp

Stationary LED UV Lamp for NDT Inspections [Video]

See how the ST700 UV inspection lamp​ can eliminate the most common UV illumination challenges fluorescent NDT testing


How to Select the Right UV-A Lamp for Your NDT Needs [Checklist]

4 things to consider when looking for a new LED UV light for fluorescent penetrant inspection or magnetic particle testing.



Frequently Asked Questions About NDT UV LED Lamps

Frequently Asked Questions About NDT UV LED Lamps


UV-A Intensity: What’s Special About 5,000 µW?

UV-A Intensity: What’s Special About 5,000 µW?

Most UV-A lamps on the market are set to provide 5,000 µW/cm2 at a distance of 15 in / 38 cm. What’s so special about those numbers?


Why Do I Get Over 2 Foot-Candle / 20 Lux Visible Light from My LED UV-A Lamp?

Why Do I Get Over 2 Foot-Candle / 20 Lux Visible Light from My LED UV-A Lamp?

A quick history of the visible light emissions requirement, where it is today, and an overview of UV meters


Handheld LED UV Lamps

About the EV6000 Handheld LED UV Lamp [Videos]

Check out how Magnaflux’s EV6000 stacks against other leading UV-A portable handheld lamps in the market


Learn how to achieve a high intensity beam of light with UV LEDs for NDT inspection

3 Facts About LED Optics and The Impact of Ultraviolet Light

Learn how to achieve a high intensity beam of light with UV LEDs for NDT inspection


Learn how to achieve a high intensity beam of light with UV LEDs for NDT inspection

NRTL: What Does It Mean and Why Does It Matter?

NRTL stands for Nationally Recognized Testing Laboratory, but what does that mean to you?


4 Monthly Checks Required for all LED Inspection-Grade Lamps

4 Monthly Checks Required for all LED Inspection-Grade Lamps

User-check requirements for LED UV-A lamps, and how to plot the beam of an LED UV-A lamp for Airbus AITM6-1001 Issue 11


Understanding Safety Data Sheets

Understanding Safety Data Sheets: Do You Know What’s in the Chemicals You Handle?

We highlight the 5 major sections to understand on a Safety Data Sheets (SDS) in accordance with US OHSHA Hazcom 2012 GHS regulations


Nadcap AC7114 Rev J

How to Comply with NADCAP AC7114 Requirements for LED UV Lamps

An overview of Rev J changes to Nadcap AC7114 Non-Destructive Testing audit checklists for Penetrant and Magnetic Particle


Airplane Engine NDT

How to Improve Fluorescent NDT Process Control with LED UV Lighting [Case Study]

See how an aerospace OEM manufacturer increased NDT inspection reliability & control with wide-beam, overhead LED UV-A lamps


Dye Penetrant Testing on Pipe

NDT UV Lamps “Stabilize” vs “Warm Up”, What’s the Difference?

Understanding the difference between NDT mercury-vapor lamp “warm-up” time and LED black light “stabilization” time


Shedding Light on ASTM E2297 & E3022: A Guide to NDT UV Lamp Standards

An overview of two of the most common standards for NDT UV light sources, ASTM E2297 and ASTM E3022.


Why Does ASTM E3022 Require a Filter for LED UV Lamps?

Learn about the function and importance of UV-a pass filters, and why ASTM E3022 requires all LED UV-A lamps to have them.


Complying with Airbus AITM requirements – How to check UV stability

Complying with Airbus AITM Requirements – How to Check UV Stability

Learn how to comply with the new requirements of the latest revision of Airbus AITM 6-1001


New High-Intensity, Dual-Light LED UV Lamp for NDT Pros

Learn about how the EV6500 UV lamp for nondestructive testing improves visibility & versatility while minimizing time to inspect parts


Subscribe to Magnaflux News:


155 Harlem Avenue
Glenview, IL 60025, USA
Telephone: +1 847-657-5300
Contact Magnaflux Customer Service

Select Your Country North America Mexico Brazil China Europe Russia India New Zealand, Australia, Japan, Southeast Asia
© 2019 Magnaflux - all rights reserved.

We have placed cookies on your computer to give you the best possible experience with our website. These cookies are also used to ensure we show you advertising that is relevant to you. If you continue without changing your settings, you are agreeing to our use of cookies to improve your user experience. You can click the cookie settings link on our website to change your cookie settings at any time.